
Week 9 - Monday



 What did we talk about last time?
 Software quality assurance







 Test driven development (TDD) is a style of development 
where testing is an integral part of coding

 The key idea of TDD is that you write tests for the code before
you write the code
 Thus, the tests aren't distorted by writing the code

 TDD is used for Extreme Programming, but it can be used for 
any approach, agile or plan-driven



 You have to have a testing framework
 Tests are written before code
 Tests and code are written 

incrementally
 Write tests for some functionality, then 

write code to pass them
 Code is only written to pass tests
 "Doing the simplest thing that could 

possibly work"
 Refactoring is expected
 Writing code only to pass tests might end 

up with funky design

Write Tests

Run Tests

Write Code to 
Pass Tests

Refactor

[pass] [not pass]

[unit complete]
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 By making the test first, you really understand what you're 
trying to implement

 Your testing has better code coverage, testing every segment 
of code at least once

 Regression testing happens naturally
 Debugging should be easier since you know where the 

problem likely is (the new code added)
 The tests are a form of documentation, showing what the 

code should and shouldn't do





 Nowadays, running large test suites can be automated
 Tools such as JUnit and other testing tools allow us to:
 Write clearly marked tests with special set-up and clean-up code if 

needed
 Run the tests, sometimes with randomized values or in randomized 

orders
 Record which tests pass and fail
 Show coverage information to see which lines of code the tests 

covered



 JUnit is a popular framework for automating the unit testing 
of Java code

 JUnit is built into IntelliJ and many other IDEs
 It's possible to run JUnit from the command line after 

downloading appropriate libraries (but doing so is a pain)
 JUnit is one of many xUnit frameworks designed to automate 

unit testing for many languages
 You are required to make JUnit tests for Project 3
 JUnit 5  is the latest version of JUnit, and there are small 

differences from previous versions



 For each set of tests, create a class
 Code that must be done ahead of every test has the @BeforeEach annotation
 Each method that does a test  has the @Test annotation
import org.junit.jupiter.api.*;
public class Testing {

private String creature;

@BeforeEach
public void setUp() {

creature = "Wombat";
}

@Test
public void testWombat() {

Assertions.assertEquals("Wombat", creature, "Wombat failure");
}

}



 An assertion is something that must be true in a program
 Java (4 and higher) has assertions built in
 You can put the following in code somewhere:

 If the condition before the colon is true, everything is fine
 If the condition is false, an AssertionError will be thrown with the 

message after the colon
 Caveat: The JVM normally runs with assertions turned off, for 

performance reasons
 You have to run it with assertions on for assertion errors to happen
 You should run the JVM with assertions on for testing purposes

String word = "phlegmatic";
assert word.length() < 5 : "Word is too long!";



 When you run a test, you expect to get a certain output
 You should assert that this output is what it should be
 JUnit 5 has a class called Assertions that has a number of static methods used to assert 

that different things are what they should be
 Running JUnit takes care of turning assertions on

 The most common is assertEquals(), which takes the expected value, the actual 
value, and a message to report if they aren't equal:
 assertEquals(int expected, int actual, String message)
 assertEquals(char expected, char actual, String message)
 assertEquals(double expected, double actual, double delta, String 
message)

 assertEquals(Object expected, Object actual, String message)
 Another useful method in Assertions:
 assertTrue(boolean condition, String message)



 We know that the substring() method on String
objects works, but what if we wanted to test it?

import org.junit.jupiter.api.*;

public class StringTest {

@Test
public void testSubstring() {

String string = "dysfunctional";
String substring = string.substring(3,6);
Assertions.assertEquals("fun", substring, "Substring failure!");

}
}



 What if a method is supposed to throw an exception under certain conditions?
 It should be considered a failure not to throw an exception
 The Assertions class also has a fail() method that should never be called
import org.junit.jupiter.api.*;

public class FailTest {
@Test
public void testBadString() {

String string = "armpit";
try {

int number = Integer.parseInt(string);
Assertions.fail("An exception should have been thrown!");

}
catch(NumberFormatException e) {}

}
}



 Imagine you've got a method that decides whether a year is a 
leap year

 What are good tests for it?
 Let's write at least three JUnit tests for it
 We can do TDD and write the method after we write the tests

public static boolean isLeapYear(int year)



 Imagine you've got a method with the following signature 
that sorts an array in ascending order

 What are good tests for it?
 Let's write at least four JUnit tests for it
 We can do TDD and write the method after we write the tests

public static void sort(int[] array)



 Imagine you've got a class that stores time

 What are good tests for it?
 Let's write at least four JUnit tests for it

public class Time {
private int hour;
private int minute;
private boolean am;
// Methods
public Time(int hour, int minute, boolean am) {}
public String toString() {} // Example: "3:06 pm"
public int getHour() {}
public int getMinute() {}
public boolean isAm() {}
public void addMinutes(int minutes) {}
public void addHours(int hours) {}

}





 Debugging and system testing on Wednesday



 Read Chapter 10: System Testing for Wednesday
 Finish the final version of Project 2 and the reflection
 Due tonight before midnight!
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