
Week 9 - Monday

 What did we talk about last time?
 Software quality assurance

 Test driven development (TDD) is a style of development
where testing is an integral part of coding

 The key idea of TDD is that you write tests for the code before
you write the code
 Thus, the tests aren't distorted by writing the code

 TDD is used for Extreme Programming, but it can be used for
any approach, agile or plan-driven

 You have to have a testing framework
 Tests are written before code
 Tests and code are written

incrementally
 Write tests for some functionality, then

write code to pass them
 Code is only written to pass tests
 "Doing the simplest thing that could

possibly work"
 Refactoring is expected
 Writing code only to pass tests might end

up with funky design

Write Tests

Run Tests

Write Code to
Pass Tests

Refactor

[pass] [not pass]

[unit complete]

[u
ni

t i
nc

om
pl

et
e]

 By making the test first, you really understand what you're
trying to implement

 Your testing has better code coverage, testing every segment
of code at least once

 Regression testing happens naturally
 Debugging should be easier since you know where the

problem likely is (the new code added)
 The tests are a form of documentation, showing what the

code should and shouldn't do

 Nowadays, running large test suites can be automated
 Tools such as JUnit and other testing tools allow us to:
 Write clearly marked tests with special set-up and clean-up code if

needed
 Run the tests, sometimes with randomized values or in randomized

orders
 Record which tests pass and fail
 Show coverage information to see which lines of code the tests

covered

 JUnit is a popular framework for automating the unit testing
of Java code

 JUnit is built into IntelliJ and many other IDEs
 It's possible to run JUnit from the command line after

downloading appropriate libraries (but doing so is a pain)
 JUnit is one of many xUnit frameworks designed to automate

unit testing for many languages
 You are required to make JUnit tests for Project 3
 JUnit 5 is the latest version of JUnit, and there are small

differences from previous versions

 For each set of tests, create a class
 Code that must be done ahead of every test has the @BeforeEach annotation
 Each method that does a test has the @Test annotation
import org.junit.jupiter.api.*;
public class Testing {

private String creature;

@BeforeEach
public void setUp() {

creature = "Wombat";
}

@Test
public void testWombat() {

Assertions.assertEquals("Wombat", creature, "Wombat failure");
}

}

 An assertion is something that must be true in a program
 Java (4 and higher) has assertions built in
 You can put the following in code somewhere:

 If the condition before the colon is true, everything is fine
 If the condition is false, an AssertionError will be thrown with the

message after the colon
 Caveat: The JVM normally runs with assertions turned off, for

performance reasons
 You have to run it with assertions on for assertion errors to happen
 You should run the JVM with assertions on for testing purposes

String word = "phlegmatic";
assert word.length() < 5 : "Word is too long!";

 When you run a test, you expect to get a certain output
 You should assert that this output is what it should be
 JUnit 5 has a class called Assertions that has a number of static methods used to assert

that different things are what they should be
 Running JUnit takes care of turning assertions on

 The most common is assertEquals(), which takes the expected value, the actual
value, and a message to report if they aren't equal:
 assertEquals(int expected, int actual, String message)
 assertEquals(char expected, char actual, String message)
 assertEquals(double expected, double actual, double delta, String
message)

 assertEquals(Object expected, Object actual, String message)
 Another useful method in Assertions:
 assertTrue(boolean condition, String message)

 We know that the substring() method on String
objects works, but what if we wanted to test it?

import org.junit.jupiter.api.*;

public class StringTest {

@Test
public void testSubstring() {

String string = "dysfunctional";
String substring = string.substring(3,6);
Assertions.assertEquals("fun", substring, "Substring failure!");

}
}

 What if a method is supposed to throw an exception under certain conditions?
 It should be considered a failure not to throw an exception
 The Assertions class also has a fail() method that should never be called
import org.junit.jupiter.api.*;

public class FailTest {
@Test
public void testBadString() {

String string = "armpit";
try {

int number = Integer.parseInt(string);
Assertions.fail("An exception should have been thrown!");

}
catch(NumberFormatException e) {}

}
}

 Imagine you've got a method that decides whether a year is a
leap year

 What are good tests for it?
 Let's write at least three JUnit tests for it
 We can do TDD and write the method after we write the tests

public static boolean isLeapYear(int year)

 Imagine you've got a method with the following signature
that sorts an array in ascending order

 What are good tests for it?
 Let's write at least four JUnit tests for it
 We can do TDD and write the method after we write the tests

public static void sort(int[] array)

 Imagine you've got a class that stores time

 What are good tests for it?
 Let's write at least four JUnit tests for it

public class Time {
private int hour;
private int minute;
private boolean am;
// Methods
public Time(int hour, int minute, boolean am) {}
public String toString() {} // Example: "3:06 pm"
public int getHour() {}
public int getMinute() {}
public boolean isAm() {}
public void addMinutes(int minutes) {}
public void addHours(int hours) {}

}

 Debugging and system testing on Wednesday

 Read Chapter 10: System Testing for Wednesday
 Finish the final version of Project 2 and the reflection
 Due tonight before midnight!

	COMP 3100
	Last time
	Questions?
	Test Driven Development
	Test driven development
	Principles of TDD
	Benefits of TDD
	JUnit
	Unit testing tools
	JUnit
	JUnit classes
	Assertions
	Assertions in JUnit tests
	Assertion example
	Sometimes failing is winning
	JUnit practice
	JUnit practice
	JUnit practice
	Upcoming
	Next time…
	Reminders

